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Abstract 

Structure solution of nanostructured materials that have limited long-range remains a bottleneck in materials 

development. We present a deep learning algorithm, DeepStruc, that can solve a simple nanoparticle structure 

directly from a Pair Distribution Function obtained from total scattering data by using a conditional variational 

autoencoder (CVAE). We first apply DeepStruc to PDFs from seven different structure types of monometallic 
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nanoparticles, and show that structures can be solved from both simulated and experimental PDFs, including 

PDFs from nanoparticles that are not present in the training distribution. We also apply DeepStruc to a system 

of hcp, fcc and stacking faulted nanoparticles, where DeepStruc recognizes stacking faulted nanoparticles as an 

interpolation between hcp and fcc nanoparticles and is able to solve stacking faulted structures from PDFs. Our 

findings suggests that DeepStruc is a step towards a general approach for structure solution of nanomaterials.  

 

Introduction 

Crystallographic methods, such as single crystal and powder diffraction, have been foundational in the 

development of functional materials over the past century. They yield atomic-scale structural models for 

crystalline materials and allow establishing the links between material structure and properties that are at the 

heart of materials development.1,2 However, other approaches for structure determination are needed for 

nanostructured materials that have limited long-range order, and total scattering methods such as atomic pair 

distribution function (PDF) analysis have become increasingly important tools.3-7 Currently, PDF analysis is 

mainly done by fitting a known starting model to an experimental PDF, a process known as structure refinement. 

Recent developments in automated modelling8-10 have made it possible to extend the searched structural space, 

but identifying a model or solving a structure de novo from a PDF is still an enormous challenge. So far, only 

highly symmetrical nanostructures such as the C60 buckyball have been solved ab initio from a PDF.11-15 

Determining the structure of less symmetrical nanostructures is limited by the lost information caused by PDF 

peak overlap, which challenges the use of PDF for structure solution of more complicated nanomaterials.  

An approach to handle the challenges due to the information barrier in PDFs is to employ supervised machine 

learning (ML) methods that can learn from well-known PDF-structure pairs. In this work, we use deep generative 

models (DGMs). DGMs are a class of ML models that can estimate the underlying data distribution from a 

reasonably small set of training examples.16 A well-known use case of DGMs is in the generation of synthetic 



 
 

3 

‘deep-fake’ images17,18 based on large datasets of real images. We here train our DGM to identify new structure 

models by training on known chemical structures. The DGM learns the relation between PDF and atomic 

structure, which enables it to solve a structures, based on a PDF it has not seen befeore and its learned chemical 

knowledge.  

We apply our DGM, which we refer to as ‘DeepStruc’, for structural analysis of a model system of monometallic 

nanoparticles (MMNPs) with seven different structure types (Fig. 1a) and demonstrate the method for both 

simulated and experimental PDFs. DeepStruc is generative, which means that it can be used to construct 

structures that are not in the training set, i.e., solve a structure from a PDF. We demonstrate this capability on a 

dataset of face-centered cubic (fcc), hexagonal closed packed (hcp) and stacking faulted structures, where 

DeepStruc can recognize the stacking faulted structures as an interpolation between fcc and hcp and construct 

new structural models based on a PDF.  

 

Results 

Training DeepStruc to determine the structure of MMNPs from PDF data 

DeepStruc, illustrated in Fig. 1a and discussed below, is a conditional variational autoencoder (CVAE). 

Autoencoders are a class of deep learning (DL) methods where high-dimensional inputs, such as chemical 

structures,19,20 are reduced in dimensionality. The transformation into 2 or 3 dimensional vectors is achieved 

using an information bottleneck by an encoder neural network (NN),19,21,22 and the resulting lower-dimensional, 

compressed feature space is known as the latent space. A decoder NN can reconstruct the input from these low-

dimensional representations. When the latent space is regularized (smoothed) using normal distributions instead 

of discrete points we obtain a variational autoencoder (VAE). The VAE can be made to be dependent 

(conditioned) on additional information by the prior NN resulting in a CVAE.22   
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We here use MMNP structures (Fig. 1b) as input, and condition them on their simulated PDFs (Fig. 1c). The 

MMNP structures span seven different structure types computed using a variety of metals to emulate the 

variability in bond lengths in real metallic nanoparticle samples. The structure types are simple cubic (sc), body-

centered cubic (bcc), face-centered cubic (fcc), hexagonal closed packed (hcp), decahedral, icosahedral, and 

octahedral, and all structure types have been constructed in sizes from 5 to 200 atoms. We used 3743 MMNP 

structures, which were split into training- (60 %), validation- (20 %) and testing-sets (20 %). A histogram of the 

distribution of the seven structure types are provided in section A in the Supplementary Information. During the 

training process (blue + green region Fig. 1a), DeepStruc learns to map the conditioning PDFs to their structures 

in the latent space. After the training process is complete, DeepStruc can be used on data that have not been part 

of the training set, which is referred to as ‘inference’. Further details about the DeepStruc network can be found 

in the Method section. 
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Fig. 1 | Training DeepStruc to determine the structure of MMNPs from PDFs. a) DeepStruc predicts the 

xyz-coordinates of the MMNP structure with conditional input provided in the form of a PDF. The encoder uses 

the structure and its PDF as input while the prior only takes the PDF as input. To obtain the structural output a 

latent space embedding is given as input to the decoder which produces the corresponding MMNP xyz-

coordinates. During training of DeepStruc both the blue and green regions are used, while only the green region 
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is used for structure prediction during the inference process. b) Examples of the seven different structure types 

which are used as input to DeepStruc together with their c) simulated PDFs used as conditioning in DeepStruc. 

Each structure type has been included in the training set with varying sizes of 5 to 200 atoms and with varying 

lattice constants. The 3743 structures were split into training- (60 %), validation- (20 %), and testing sets (20 

%).  

 

Mapping of structures in a latent space 

We first evaluate DeepStruc’s ability to map the MMNP structures in a low-dimensional latent space by 

investigating structural trends and clustering. Fig. 2 shows a visualization of the two-dimensional latent space 

with selected MMNP reconstructions indicated. The colour of the points indicates the structure type, and the 

relative point size indicates the size of the MMNP cluster. We observe that DeepStruc learns to map the chemical 

structures in the latent space by size and symmetry. It maps the cubic structure types (sc, bcc, and fcc) together, 

and it learns that the octahedral MMNPs are closely related to the fcc structure type. Interestingly, DeepStruc 

also allocates the decahedral structures to be in between the fcc and hcp structures. This can be rationalized by 

considering that decahedral structures are constructed from five tetrahedrally shaped fcc crystals which are 

separated by {111} twin boundaries that resemble stacking faults.9,23,24 The twin boundaries will resemble 

stacking faulted regions of fcc justifying that they exist in the latent space between fcc and hcp. 
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Fig. 2 | The two-dimensional latent space with structure reconstructions. The points in the latent space 

correspond to a structure and its simulated PDF. Data points from the test set are shown in solid colour and 

outlined. The points from the training and validation sets are shown as semi-transparent. The size of the points 

relates to the size of the embedded MMNP, and the orange background indicates the general size increase 

throughout the latent space. The colour of each point resemblances its structure type, fcc (light blue), 

octahedral (dark grey), decahedral (orange), bcc (green), icosahedral (dark blue), hcp (pink), and sc (red). Note 

that the test set structures shown here are the predicted structures from DeepStruc obtained during inference.  
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DeepStruc for structure determination from PDF 
We now move on to identify structures directly from a PDF. The results of using DeepStruc on seven simulated 

PDFs of MMNPs not used in the training process are illustrated in Fig 3. Here, we show the structure that the 

input PDF was calculated from (left), the reconstructed structure (right), and its agreement with the input PDF 

after structure refinement (middle, discussed below). In all seven cases, the structures are correctly reconstructed 

from the PDF input. Before structure refinement, the mean absolute error (MAE) of the atom positions is 0.128 

± 0.073 Å as described in section B in the Supplementary Information. However, the MAE is artificially high 

due to a common aberration by DeepStruc, where it predicts the right geometric atomic arrangement, but 

isotropically contracted or expanded compared to the original structure. After refining the structure to the PDF25 

by fitting a contraction/expansion factor, a scale factor and an isotropic atomic displacement parameter (ADP), 

as described in section B in the Supplementary Information, the MAE of the atom positions is reduced to 0.093 

± 0.058 Å. The inference is thus robust against moderate changes in lattice parameter between a provided PDF 

and the structures that DeepStruc were trained on. The reconstructed structures exhibit some artificial positional 

atomic disorder that broadens the PDF peaks. The fitted ADP values (section B in the Supplementary 

Information) are thus lower than the ADP values of the conditioning PDFs.  
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Fig. 3 | Structure determination from PDFs. Simulated PDFs (grey) from the original structures of the seven 

different structure types (left) are used during inference for structure prediction (right).  The middle column 

shows the fitted PDFs of the predicted structures to the simulated PDFs of the original structures. Only the scale-

factor, contraction/expansion-factor, and ADP are refined, see section B in the Supplementary Information. 

 



 
 

10 

Having established that DeepStruc works for structures highly resembling those in the training set, we now 

consider more challenging cases and explore the capabilities of DeepStruc on data which is far from the training 

distribution. As described above, the largest structures in the training set contained only 200 atoms. We now 

evaluate it on a test set of simulated MMNPs with 5 to 1000 atoms, i.e., containing much larger particles. The 

latent space obtained from this new test set is plotted using diamond markers in Fig. 4, where the latent space 

from the training process is shown with semi-transparent markers. We observe that the trends in the training area 

are comparable for the training set and the test set of larger MMNPs. Notably, the trends of both the size and the 

structure types continue beyond the training area to structures containing about 400 atoms. Beyond 400 atoms, 

all structure types collapse onto a line, however a size estimate of the structure can still be obtained from 

DeepStruc. Of course, DeepStruc could be retrained on a larger training set if reconstructions are desired on 

clusters larger than 200 atoms. However, this test shows that DeepStruc can extrapolate significantly in the latent 

space. It can thereby give useful information about PDFs from structures not represented in the training set and 

is generative in a meaningful way. This can be compared to, for example, a tree-based ML-classifier, which is 

limited to a predefined structural database and cannot extrapolate. The capability of DeepStruc to extrapolate 

arises from each structure in the latent space being predicted as a normal distribution instead of a discrete point. 

We have previously demonstrated that VAEs can do a better job interpolating in the latent space compared to 

deterministic AEs.19  
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Fig. 4 | DeepStruc applied on PDFs of structures up to 1000 atoms. Each point is coloured after its structure 

type, i.e. fcc (light blue), octahedral (dark grey), decahedral (orange), bcc (green), icosahedral (dark blue), hcp 

(pink), and sc (red). Each point in the latent space corresponds to a structure based on its simulated PDF. Test 

PDFs from structures up to 1000 atoms are plotted as diamond markers on top of the training and validation data 

which are made semi-transparent. Note that the training set latent space is identical to that plotted in Fig. 2. 

DeepStruc has only been trained on structures up to 200 atoms. Three experimental PDFs (shown in section C 

in the Supplementary Information) obtained from differently sized fcc nanocrystals estimated to contain 203 

(cross marker 1), 371 (cross marker 2), and 1368 (cross marker 3) atoms are illustrated as purple cross markers 

in the latent space.  

 

In practice, DeepStruc must be able to yield valid reconstructed structures from experimental data that contain 

noise and other aberrations. We therefore use DeepStruc to infer structures from previously published 

experimental PDFs from MMNPs. Fig. 5a shows the latent space with the predicted location of structures from 



 
 

12 

three experimental PDFs. Here, the location in the latent space is represented as distributions rather than as 

discrete points, and multiple structures are sampled from each distribution and compared to the experimental 

PDF to select the best candidate. The mean of the experimental PDF distributions is represented as a black 

diamond with three ellipsoids indicating different confidence intervals with σ: 3, 5 and 7, where σ is the standard 

deviation of the normal distribution. 

The first experimental dataset that we evaluate was published by Jensen et al.,26 who identified a decahedral 

structure as the core motif of Au144(p-MBA)60 nanoparticles. DeepStruc locates the Au144(p-MBA)60 PDF (Fig. 

5b) in a decahedral region (orange distributions in Fig. 5a) in the latent space. Given the generative capabilities 

of DeepStruc, in theory, we can sample an unlimited number of structures for a given PDF. As described in 

section D of the Supplementary Information, we here sampled up to 1000 structures from the three normal 

distributions (σ: 3, 5, and 7), and compared their fit to the experimental PDF. Fig. 5b shows the fit of the best 

structural prediction, which was among the structures sampled from the σ: 3 distributions.  DeepStruc predicts a 

decahedral structure, which agrees well with the literature.26 Other structures sampled from the three distributions 

are shown in Section E of the Supplementary Information, where we also compared the DeepStruc analysis to 

two baseline methods, a brute-force structure-mining method, and a tree-based ML classifier. 

The second dataset that we evaluate, published by Quinson et al.,27 are from 1.8 nm Pt nanoparticles with the fcc 

structure (described further in Section C in the Supplementary Information). This size corresponds to ca. 203 

atoms, i.e. the number of atoms in the particle goes slightly beyond the fcc structures in the training set that 

contain only 165 atoms.27 The location of the predicted mean is again shown as a black diamond in Fig. 5a, 

enclosed by three blue ellipsoids illustrating different magnitudes of standard deviation. The mean of the 

predicted structure is placed near the largest sc structures. If DeepStruc only favoured symmetry it would be 

placed directly on the fcc structures. Interestingly, DeepStruc does not purely favour size either, as it does not 

position the PDF near the largest structures which are hcp structures of 200 atoms. Instead, we observe that 
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DeepStruc takes both symmetry and size into account by placing the mean predicted structure adjacent to the 

largest sc structures containing 185 atoms. To identify the structure from the experimental PDF, we again sample 

1000 structures from the σ: 3, 5 and 7 distributions. When fitting these sampled structures to the dataset, we 

obtain the best fit from an fcc structure of 146 atoms that is visualized in Fig. 5c and which agrees with the 

baseline models (section E in the Supplementary Information). DeepStruc thus identifies an fcc structure even 

though the size of the MMNP is outside the training set distribution.  

We also attempted to input PDFs from even larger fcc nanoparticles, estimated to have diameters of 2.2 and 3.4 

nm, corresponding to 371 and 1368 atoms, respectively (section C in the Supplementary Information).27 Their 

positions in the latent space are shown in Fig. 4 along with the 1.8 nm fcc nanoparticles using cross markers 

labelled 1, 2, and 3 for increasing size. We observe that they follow the trend of the simulated fcc structures 

discussed above: while it is possible to estimate both size and symmetry for the 2.2 nm particles through 

extrapolation, DeepStruc can only estimate size for the 3.4 nm particle. Overall, the ability of DeepStruc to 

predict on experimental data for structures beyond those in the training set is promising for structure solution 

from PDF. 

 

While DeepStruc only has been trained on simple MMNPs, we finally evaluate it on a PDF from Au144(PET)60 

nanoparticles, consisting of an icosahedral core of 54 atoms surrounded by a rhombicosidodecahedron shell of 

60 atoms (Fig. 5d and e).26,28 We show the predicted mean position of the structure with a black diamond enclosed 

by pink ellipsoids. DeepStruc positions the PDF in the hcp region of the latent space, and when sampling 1000 

structures from the distribution with σ: 7, the best fitting structures is an hcp structure with 40 atoms for the 

Au144(PET)60 nanoparticle (Fig. 5d). Similar structures are found when sampling from the σ: 3 and σ: 5 

distributions. However, the PDF fit reveals that the reconstructed structure does not capture all peaks in the 

experimental PDF. When considering further the latent space, icosahedral structures are strongly 
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underrepresented in our dataset (section A in the Supplementary Information) which results in an inconsistency 

when placing icosahedral structures in the latent space. DeepStruc is thus challenged when solving the 

icosahedral core structure of the nanoparticle. However, we observe that one of the test icosahedral structures is 

placed near the experimental PDF in latent space within the σ: 5 distribution. Therefore, we again try to sample 

1000 structures by moving the mean of the σ: 3 distribution to the nearest cluster of icosahedral structures in the 

latent space, which are located right outside the σ: 7 distribution. The best fitting structure (Fig. 5e) captures all 

main peaks of the experimental PDF. Strategies for sampling of underrepresented structures is discussed further 

in section D in the Supplementary Information. 
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Fig. 5 | Fitting experimental PDFs with structures obtained by DeepStruc. a) The DeepStruc latent space 

showing predicted latent space positions for structures from three experimental PDFs. The predicted means are 

shown as diamond markers, which are enclosed by three rings, indicating the sampling regions for σ: 3, 5, and 

7. b) PDF fit of the reconstructed structure from the Au144(p-MBA)60 PDF26 c) PDF fit of the reconstructed 

structure from the 1.8 nm Pt nanoparticle PDF from Quinson et al.27, d) PDF fit of the reconstructed structure 

from the Au144(PET)60 PDF26 using a hcp structure. e) PDF fit of the reconstructed structure from the 

Au144(PET)60 PDF26 using an icosahedral structure. Note that the test set structures shown here are the predicted 

structures from DeepStruc obtained during inference on experimental PDFs. 
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Structure determination from PDF: fcc, hcp, and stacking faulted nanoparticles  

To obtain a deeper understanding of the latent space’s behaviour, we investigate a simpler dataset only containing 

fcc, hcp, and stacking faulted structures. Fcc and hcp structures are distinguished by the stacking sequence of 

closed packed layers in their structures: while fcc structures can be described by ABCABC stacking, hcp 

structures has ABABAB stacking. Structures with other sequences are stacking faulted structures. We 

hypothesize that stacking faulted structures can be considered an ‘interpolation’ in the discrete space between 

the fcc and hcp structure type.29  

Examples of reconstructed fcc (blue), hcp (pink), and different stacking faulted structures (purple) and their 

position in the new latent space are illustrated in Fig. 6a. The MMNPs cluster in size, whilst we also observe that 

fcc and hcp structures separate in the latent space. It is evident that the stacking faulted structures are located in 

between the fcc and hcp structures in the latent space as hypothesized. It is chemically reasonable that they are 

positioned in this exact order based on their similarity to fcc and hcp. For example, the structure with ABCABA 

layers, shown in Fig. 6 with a purple star is structurally close fcc. We see that it is also located closer to the fcc 

structures in the latent space. On the other hand, the structure with ABCBCB layers (marked as a purple diamond 

in Fig. 6) can be considered structurally more closely related to hcp than fcc. DeepStruc places this structure 

adjacent to hcp structures of the same size in the latent space. DeepStruc can thus insert stacking faulted 

structures between fcc and hcp into the latent space in a chemically meaningful way.  

Fig. 6b illustrates the fits of the reconstructed structures to the PDF data. The difference curves indicate that the 

predicted and true structures are very close to being identical, which is supported by the MAE (section G in the 

Supplementary Information). While disorder causes a broadening of the peaks, the disorder in the generated 

structures is minor and structures with distinct difference between the layers and in the correct sequence can be 

reconstructed to a satisfying degree. This is a promising result, showing that a CVAE can be used as a tool to 
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determine the structure of stacking faulted nanoparticles from PDFs,30,31 which is a topic of significant current 

interest.32-36 

 

Fig. 6 | Latent space and reconstructions of stacking faulted nanoparticles. a) The latent space and 

reconstructed structures shown with their stacking sequence. The structures are shown in two dimensions, and 
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the size (number of atoms) in the third dimension is given as ‘depth’. The semi-transparent dots in the latent 

space represent the training and validation data, and the solid dots represent the test data. Fcc structures are 

plotted in blue, hcp in pink, and the stacking faulted structures in purple. The marker size represents the size of 

the structures.  B) Fits from reconstructed structures from the test PDF from a fcc (ABCABC stacking), a hcp 

(ABABAB stacking), and two stacking faulted structures. The original conditioning PDFs are shown in grey, 

while the PDFs of the generated structures are coloured according to their structure type. The difference curves 

are shown in green. The latent space is two-dimensional, hence allowing it to be directly visualized. Note that 

the test set structures shown here are the predicted structures obtained from DeepStruc during inference. 

 

Discussion 

We have shown the potential of using a DGM for structure determination from simulated and experimental PDFs. 

Our CVAE algorithm DeepStruc provides valuable information through its latent space, as the MMNP structures 

cluster based on symmetry and size in agreement with their structural chemistry. Using experimental data, the 

Au144(p-MBA)60 nanoparticle was determined to be decahedral, Pt nanoparticles were determined to be fcc and 

the Au144(PET)60 was determined to have an icosahedral core structure, all in agreement with previous literature.  

Our approach is only restricted by the distribution of the structural training set. When DeepStruc is trained on 

fcc, hcp, and stacking faulted structures, it will locate the stacking faulted structures in between the fcc and hcp 

structures. This suggests a strategy for training DeepStruc models on different chemical systems that also 

‘interpolate’ from one to another when this can be identified. DeepStruc does not yet provide a completely 

general structure solution approach but gives critical insight into how DGMs can interact with structural and 

diffraction information to yield candidate structures and ultimately structure solutions.  

We plan to implement DeepStruc as part of PDF-in-the-cloud (PDFitc.org),37 where the training data can 

gradually be expanded over time. Combining the PDF conditioning with data from complimentary techniques 
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could prove important for structure determination of more complex systems. Such studies would both enable 

structure determination from a combined modelling perspective, but it would also reveal fundamental aspects of 

the information content of the different datasets for solving structure problems. 
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Method 

In the following sections, we briefly explain what a PDF is, how we obtained the simulated PDFs and their 

structures, and finally we elaborate on the CVAE method developed here to analyse PDFs. A more detailed 

description of the PDF is given elsewhere.38  

 

The Pair Distribution Function (PDF) 

The PDF is the Fourier transform of total scattering data, which can be obtained through x-ray, neutron, or 

electron scattering. In this work we focus on the usage of x-ray total scattering data. The scattering vector Q is 

defined as follows, where 𝜆 is the radiation wavelength, and 𝜃 is the scattering angle: 

𝑄 =
4𝜋𝑠𝑖𝑛(𝜃)

𝜆  

The measured scattering intensities are denoted I(Q), which are corrected for incoherent scattering, fluorescence, 

etc. and normalized such that the total scattering structure function S(Q) is obtained.  

𝑆(𝑄) =
𝐼(𝑄) − 〈𝑓(𝑄)!〉 + 〈𝑓(𝑄)〉!

〈𝑓(𝑄)〉! 											 

Here 𝑓 is the atomic form factor. To obtain the structural real-space information, the total scattering structure 

function is Fourier transformed over the truncated Q-range, hence yielding the reduced PDF also known as G(r): 

𝐺(𝑟) 	= 		2/𝜋		 8 	𝑄[𝑆(𝑄) 	− 	1]	𝑠𝑖𝑛(𝑄	 · 	𝑟)𝑑𝑄
"!"#

"!$%

 

G(r) can be interpreted as a histogram of real-space interatomic distances and the information is equivalent to 

that of an unassigned distance matrix (uDM). Simulated PDFs are shown in Fig. 1b and all simulation parameters 

can be found in section H in the Supplementary Information. The PDFs used in this project are normalised to 

have I(G(r)) = 1 as illustrated in section I in the Supplementary Information. 

 

Simulated and experimental data 
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To simulate the nanoparticles used in the training process of DeepStruc, the Python library atomic simulation 

environment (ASE) was used.39 The seven different structure types: fcc, bcc, sc, hcp, icosahedral, decahedral, 

and octahedral were constructed with the cluster module in ASE in the same manner as described by Banerjee 

et al.9 and Anker & Kjær et al.19 All MMNPs were generated in sizes ranging from 5 to 200 atoms. Each MMNP 

was then populated with different atoms hence changing the lattice spacing/bond distances in the MMNP. To 

ensure that there were no duplicate MMNPs within the dataset, all MMNPs were decomposed into a distance list 

of all atom-atom distances. The distance lists are a reduced format of the xyz representation as they are rotation- 

and translation-invariant in Euclidean space. All the distance-lists were sorted and duplicate structures with 

equivalent distance lists were removed. This yielded a total of 3742 unique MMNPs, see section A in the 

Supplementary Information for the distribution of the seven structure types. The xyz-coordinates will be the label 

that DeepStruc has to reconstruct. Nanoparticles with each of the seven structure types can be seen in Fig. 1b 

along with their simulated PDF, Fig. 1a. All the simulation parameters used can been seen in section H in the 

Supplementary Information.  

To further investigate the latent space behaviour of DeepStruc, a more chemically simple and intuitive dataset 

was made of fcc, hcp, and stacking faulted structures. Fcc and hcp can be considered layered structures that are 

only differentiated by the repetition of layers within the structure. Fcc consists of a repeated ABCABC layered 

structure where hcp is an ABABAB layered structure. A 5 layered stacking fault structure could then be described 

as ABCAC, as it does not satisfy either of the fcc or hcp stacking criteria, see Fig. 6. A total of 1620 stacking 

fault structures were generated.  

 

Data representation 

In this work, the structures from ASE are converted into a graph-based representation in order to capture the 

interatomic relationships, as the original representation generated with ASE are not optimal as input to 
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DeepStruc. Graph representations have seen increasing success in machine learning applications related to 

materials science as the interatomic relations in graphs are invariant to transformations of the structure such as 

solid translations and rotations.40,41 Each structure in graph representation can be described as G = (X,A), where 

X ∈ ℝN×F is the node feature matrix which contains F features that can describe each of the N atoms in the 

structure. We use F = 3 comprising only the Euclidean coordinates of the atom in a 3-dimensional space. The 

interatomic relationships are captured using the adjacency matrix A ∈ RN×N. In our case, the entries of the 

adjacency matrix are the Euclidean distance between each pair of atoms, resulting in a soft adjacency matrix. 

However, to make the adjacency matrix sparse, when the distance between any pair of nodes is larger than the 

lattice constant the corresponding edge weight is set to zero. When the edge weight is zero this corresponds to 

absence of an edge between the pair of nodes, and in other cases the edges have a weight given by the interatomic 

distance. Section J in the Supplementary Information shows a decahedron consisting of seven atoms alongside 

the components describing it in our chosen graph representation.  

 

The Conditional Deep Generative Model (DGM) 

DGMs such as variational autoencoders (VAEs) are commonly used to synthesize novel, synthetic data by 

approximating the underlying data-generating processes based on the training data.42 In this work, we are 

interested in generating structures based on properties such as the PDF resulting in the conditional DGM 

scenario. The specific formulation of the conditional DGM used in this work is the CVAE, initially proposed for 

computer vision tasks43 and more recently it has also been explored for synthesizing novel drug molecules.20 The 

CVAE in this work is trained to solve the unassigned distance geometry problem44 (uDGP) as it solves the task 

of converting the distances within a PDF to a chemical structure. In the uDGP the problem of taking a starting 

point of a list of distances and reconstructing it into a structure is broken down into two discrete problems.  First, 

is to discover the graph that connects pairs of atoms, with the edges labelled by the distances from the distance 
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list (the assignment problem).  Second is to embed this graph into Euclidian space. An illustration of the CVAE 

can be seen in Fig. 1a. Here, the blue area is the training process, and the green area is the prediction/inference 

process. During training of the CVAE, the encoder takes pairs of structures and their corresponding PDFs as 

input. The encoder learns to map the structure-PDF pairs into a low-dimensional, latent Gaussian distribution, 

known as the encoder distribution. Each structure-PDF pair is mapped to certain regions of the latent space. 

When trained with large amounts of diverse data, the latent space is able to capture relationships between 

different structures and PDF pairs so that similar structures are closer in this latent space than very different 

structures. CVAEs are different from classical autoencoders in that the latent space is probabilistic, which makes 

it possible to sample structures from these latent encoder distributions. This is achieved during training by forcing 

the encoder distributions to align with a simpler prior distribution which only takes the PDF as input. The two 

distributions are matched by minimizing the Kullback-Leibler Divergence between the encoder and prior 

distributions and is interpreted as the regularization term, Lreg. 

The prior NN gets the PDF as input and maps it to the low-dimensional prior distribution. The low-dimensional 

latent vector conditioned on the PDF is then input to the decoder, which is tasked to predict the xyz-coordinates 

of the structural input. During the training process, the mean squared error (MSE) between the xyz-coordinates 

of the input and output are computed to force the decoder to predict xyx-coordinates from the latent 

representations. The MSE is defined as the reconstruction loss, Lrec. The CVAE is trained by jointly optimizing 

these two loss components: 

𝐿#$%& 	= 	 𝐿'() + 𝛽 ∙ 𝐿'(* 

where β is a scaling factor that controls the relative influence of the regularization- and reconstruction-terms. In 

our training process, at initialization β is set to 0 which allows the model to focus on minimizing Lrec. Each time 

Lrec gets below a certain threshold β is increased. This helps keep the model from falling into a local minimum 

and the process is repeated until convergence has been reached. Similar strategies for annealing β in VAEs have 
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been attempted.45,46 At inference (test) time, the prior NN receives the PDF as input which is then mapped to the 

low-dimensional latent space which during training has been trained to match the encoder distribution. A 

sufficiently well trained CVAE is then able to predict structures from the latent space based on the PDF input. 

A simplified version of the CVAE used for this work, DeepStruc, can be seen in Fig. 1a. The CVAE is presented 

more formally in our earlier work.19 

 

Graph Conditional Variational Autoencoder (CVAE) 

In this work, two types of CVAEs were utilized depending on the type of encoder. In the conventional CVAE, 

the encoder was based on Multi-Layered Perceptrons which operate on a tabular format of the node features, and 

the adjacency matrix populated with atom–atom distances. For the second type of CVAE – that we call the graph 

CVAE – the encoder consists of a graph neural network (GNN)41,47 and is able to process graph structured data, 

taking the neighbourhood information into consideration. GNNs are generalized message passing methods that 

can aggregate information from the neighbourhood of a node by passing messages along the edges. These 

messages are learned during training and can summarize the information present at the node necessary for the 

downstream tasks. Further, by making the encoder deep, i.e. adding additional GNN layers, nodes can get access 

to information from nodes that are farther from them. For instance, in a k-layered GNN each node had access to 

information from nodes that are k-hops away. In our experiments, we observed that the generative capabilities 

of the graph CVAE was better than the conventional CVAE, part E in the Supplementary Information. Further, 

we were able to obtain comparable reconstruction quality from the graph CVAE with only two latent dimensions 

compared to using eight dimensions for the conventional CVAE. This indicates that the graph encoder is able to 

better compress the information present in the node and adjacency matrices. A minor technical detail in our 

CVAE models is that the predictions from the decoder do not exactly match the input features. That is, the 
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decoder does not reconstruct the full input comprising node features and adjacency matrix but only the node 

features. The algorithm we refer to as DeepStruc refers to the graph based CVAE. 

 

Data availability  

Code for the baseline models and DeepStruc is available at: 

https://github.com/EmilSkaaning/DeepStruc 

https://github.com/AndyNano/Brute-force-PDF-modelling 

https://github.com/AndyNano/MetalFinder 

https://github.com/AndyNano/CVAE 
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